wBsp Chrond
NLR-3w-0iD-0t7

-A thesis

~ entitled (

Calculation of the Total Electron Exeitation

s

ey

Cross Section in the Born Approximation Using
Slater Wave Functions for the Li (2s'+ 2p), Li"(2s,> 3p)
Na (3s ~ 4p), Mg (3p + 4s), Ca (4s + 4p) and K (4s + 4p)

- Excitations

by

P. L. Simsic

\ :
' as partial{fulfillment of the, requirements of
the Master of Science Degree in _ v o
. Phy51cs . :

D Pl

Willey . WMo mnscr I

" Adviser

- Dean of the Graduate School

The Univer51ty of Toledo,ﬁ;
\ ,/f\?.% 559 7
Q} ,

ANESE-CR-138906) ~ CALCULATION 5F THE — NT4-273545
TOTAL ELFCTRON EXCITATION CROSS SECTION

IN THE BORN APPROXIMATION USING SLATER

¥AVE FUONCTICGHS FOR THE Li (2s YIELDS Unclas
(Tcledo Uan } 65 p HC $6.25 C5CL 03B 63/3G - 41581




ACKNOWLEDGMENTS

The author would like to thank Dr. W, Williamsen for his help
in the course of this research. Without his ideas concerning the basig.
approach to this problem, this paper would not have been possible. Partial

support for computing time was provided from NASA contract No. NGR 36~010-017.

S—— .
-

The author woﬁld also liké to thank Dr. A;.N; Witt for his idéas
concerning the astrophysical aspects of the problem.

Finally, but most important, the authotr wishés ro thank.his'wife,
Peggy, for her patience and understanding during the course of this project
and for her assistance with some calculations at the beginning of the

research.

| B

R



TABLE OF CONTENTS

ACknoWledgementS.tliont-o‘lolctooua-i-nlnlooltl-oqn.t-o-‘uo--ii

Table Of Conténts...-.....-'-...‘-......--;....-‘-...c.‘.-...._..iii

Wave Functions.......;......l._...............................4
Born Apprdximéti‘ons:.;'...;....".‘...'..'..'...‘......................8
Total Cross Sectior}.......'...'..'.....................’..._.....17
Line Strength ?f Na-§35 -> ‘3p) ..Liné......'....................30
Conclusions..l_,‘.......,...__.‘......V.........,.......'..‘..........40

Appendix-.-.-.-.7.--.o'o---.-i.’...'....‘....c..--...-...-.....42

i

ReferenCES.l...’...--...-.-.n...-.......‘.c-.......-.._.'...-....60

111

Pt b e pr e e



LIST OF TABLES

TABLE NO. ; , ‘ PAGE

I " Electron Excitation Cross SectionS e.vseesssciscsscossanssl?

(Units of nao2)

T

II ‘ Electron Excitation Cross SeCtanS for Na(BS + 4D) saaeaa29
Using 241 = 1. 35 (Units of T )

iv



FIGURE NO,

LIST OF FIGURES

PAGE

Total Cross Section Vs. Incident Energy for

Li(25 + 2p) EXCitationeessesacssescsasenovssossssnsesell
Total Cross Section vs. Incident Energyifor

Li(2s + 3p) Excitation...............................;22
Total Cross Section #s. Incident Energy for
" Na(3s + 4p) Excitation........................;.......23
fotal Cross Séction-vs.-lncident Energyrfor

Mg(3p = 48) EXCitation cuivevecesnnssnessocssassaraseseslb
Total Cross Section vs. Incident Energy for

K(4s =+ 4p) Excitation.....{......................J...-25
Tétal Cross Section vs. Incident Energy for

Ca(AS -+ ﬁp)_Excitation._....._.‘.........,...-...-...-.....26



®

INTRODUCTION

[

Galactic nebulae which show emission-line spectrum are‘of two
types,  that is, diffuse and planetary nebulae. The diffuse nebulae are
normally irregular, often of low density and surface brightness, and
sometimes extensive; whereas, planetary nebulae are generally symme-
trical and compact and usually have a higher surface bfightness and
density than the diffuse bright nebulae. The spectra of these gaseous
nebulae as well as those of certain stars, including the Sun, show
strong-eﬁission lines owing to allowed and forbidden transitioms of a
number of "heavy" elements (atoms and ionszother than H and He), such

as N, 0, Ne, S, C}, Ar, P, Fe, Ca, Mn, Cr, V, Ca and Ni in various

stages of ionization. In addition Mg I lines have been observed and Na

.and K"are_known to exist in planetary nebulae although not in great
abundance.1

Interpretation of gasecus nebulae requires proper evaluation
of-their geometrical structure,physical state, and chemical composition.
One must be able to interpret the spectra quantitatively in terms of
physical parameters and chemical composition of the emitting medium.
Coﬁsequently, collisional croséﬂsections for allowed and forbidden tran-
sitions and line intensities are necessary for thetproper interpretation
of the properties of gaseous nebulae. One type of excitation mechanism
which is possible is e + A » e + A*.

This paper considers excitations of neutral atoms by inelastic

.

scattering of incident electrons. Simple antisymmetrized pfoduct Slater

[
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WaQe functions describing the initial and final states of the atom are
used. Total cross-sections using the Born Approximation are calculated
for the following excitations: Li(2s -+ 2p), Li(2s -+ 3p), Na(3s - 4p),
Mg (3p + 4s), Cal4s =+ 4p) and'k(&s + 4p). Since intensities of the
iémitted radiation are also of imporfance in interpreting gaseous nebu-
lae, the line strength of the Na(3s ; 3p) transition is calculated using
Slate; Wave functions and compared to an experimental result.

Typical electron temperatures in gaseous nebulae are 104 oK.
1f a Maxwell distribution is assumed!the average kinetic energy at this
température is about .8‘ev.A This is below the threshold energy of all
of the transitions calculated here. There are of course electrons with
energies higher than fhis average and thesé appear in the tail of the
vélocity distribution. In partiéular for a Maxwell distribu£ion at
10£IL 9K, .9% of the total number of electrons have energies higher than
5 ev. This is above the threshold of all the tramsitions considered
here, the largest threshold being.3.75 ev.

Due to the relatively low abundance in planetary negulae of

i
the elements for ﬁhich the total cross sections are calculated here, the
. particular cross sections given may not be of great interest to those
studying these nebulae. However, by using either of the programs given '
in the Appendix it is relatively simple to obtain cross sections for
any desired s + p transition. All one needs are the threshold energies

and the configuration of the atom to allow the determination of the

effective atomic numbers. These effective atomic numbers.are calculated



using Slater's rules which are given in the next sectionm. Aﬁy deter—
mination of the effective atomic numbers using these rules takes only
a few minutes.

The reason for chooéing Li, Na and K was so that a compari-
son could be made with another reédily available calculation, i.e.
(Vainshtein, Opykhtin, Presnyakov}.2 Ca and Mg were chpsen hecause
they were originally thought to be of importance in the emission spec-
tra of comets,

The method is not expected to yield reliable results near
threshgld bé; should give answers wiéhin a‘factor of 2-7 for incident

electron energies about 3-4 times threshold.



'WAVE FUNCTIONS

Two types of wave functions are used. Both have the general
form wnﬂm = Rnicr)Yﬁm(Q) where an(r) is a Slater radial wave function
and ng(ﬂ) is a spherical harmonic. In one type which will be referred
to as Slater Wave Functions I (SWFI), the %-dependence of the an(r)'s
.waé deleted. This is equivalent to setting 2= 0 in the radial func-
tion for all n. The general form of the SWFI is given by the following:3

<,

Rl(r) f Nl exp(-zlr/ao)

==}
3]
~~
™~
S
I

= Nz[f exp (—er/2ao) + A21Rl(rj]

=]
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P
=
o
n

2
Ny (5 exp(~2,7/3a.) + AR, () + Ay R, (x)]

: { n-1
n-1
Rn(r).= Nn[? exp(—an/nao) + §=l Athj(r)]
The Nn's and Anj's are constants and are determined from the

orthonormality conditions <Ri, Rj> = Gij' Thus,

(1 s n+j+1
= N D} A A, - (n+j)! © ] “jzn-1
nj j oM. Taitii 1z, Z =
i=1 A4z
3 n
and ‘ L :
. 2i+1
‘ ja i*l 5 _
- A (i - %
! -




i
To make the radial integrations simpler the radial wave func-

tions may be rewritten in the following form,

n =1 zn—%-l-—-j r
Rn(r) Nn §=1 Fn,n+l--3 r exp ntl-j a ) (1)
where the Fn .'s can. be determined from
3 . .
n+L-j _ ' : .
Fo,1 T 1§=1 o0tk An+1-K, 2)
and we choose F =1, A = 0, 2"
n,n n,n

Theizn'slare ceffective ato@ic numbers which are determined by
the following Slater rules.4

"For determining Z = Z-s, the electrons are divided into the
' foliowing groups, each having a different shielding constant: lsi 2s,p; .
3s,p; .3d; 4s,p; 4d; ete. . (The s and p are érouped together but the d
and f are separated.) The shells are considered to be arranged from
the inside out in ﬁhe order named. . The shielding constant s for any‘
group is found as follows,

1. VNothing from any shell outside the one considered.

2. An amount 0.35 from each other electron in the group consi-
‘dered (except in the is group, where 0.30 is used instead).

3, If the shell cousidered is an s,pkshell an amount 0.85
for each elecﬁron with total quantum number 1ess'by one, and an amount
1,00 from each electron still further in; but if the shell is a-d or £,

an amount 1,00 from every electron inside it."



The second type of wave functions which are used allow for an
‘f~dependence in the radial function. Tbis is accomplished by writing
different radial functions with different L~values for the same n. These
radial wave functions are referred to as Slater Wave Function II (SWF II)

and are given by the following:
RlO = NlO exp (—er/ao)

Ry f'NéO [r exp (-Z,x/2a ) + A,4; Ry ]

Ryy = Ny [T exp (-2,r/2a )]

- n—~1
R, =N [fn—l expk(mz r/na ) + § A, R~y ]
nl nf ) n o M o=l nfin nL

The Ankn"s are the amount of the Rn'gts with n' < n - 1 which must be-

added to R, to make the R _'s orthonormal. The N
ni ‘ oo ni ‘ nf

are again determined from the orthonormality conditions

1 ]
s and Fhe Anﬂn' s

i

iRnE’ Fn‘£> = 6nn' )
. - D TR "'" TR e s e ————
o a_ n+n'+1 at-1
= o tye [ O - 1
Apgnt = Nyry [z o Z ) Ak Aprard RA
: . n n : K=1
--.T......I- —
0} T :
2n+l '
a n-1 2 -
™= ' Tr—— —
and Nz Lentizm z Aty ]
I j=1
1

Here again the radial functions can be put into a form which make the

radial integrations simpler. Thus.



n+l-j
where F = N

A :
PPN ik ¥=1 Fn,fL,n+1—K n+l1-K, 2,3

and we choose F =],
. n,4,n

n-j

Z

ntl-] -

P ((n+l-j)ao ) 3

and A
n

s 5]

=0 1if n<j<d
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BORN APPROXIMATION

The Schrodinger equation for the atom plus incident electron

is :
A Z z
2 2 2 2 .2
12{” +’f££z Vi2+ET+'Z_$_+E %—" 5T T
o i=1 =1 Yy i |F, ~T,]
b + h
2
Z e :
= :
-l ST ) =0 S
=1 [r - rjl . :
where ET,is the total energy,
&
T refers to the position of the incident electromn,
?, refers to the position of the incident atomic electrons,.
K T o= {1, « . - ?2).

e 1

> > ' '
Now expand W(r,re) in terms of a complete set of orthonormal

( » + 3 - 3
atomic wave functions wn(re) satisfying the equation

#2 Z 9 % Ze2 % e2 >
ol V.o + - + E v: (r) =0 (5
2m 1=0 i =1 rj T4 l?:} -7 I n n e

where En are the associated eigenenergies. Wow, set

WET) =S F @ ¥, E) | 6)

where S denotes a summation over the discrete states and an integration

over the continuum states.
. %

Substitute equation (6) into equation (4), multiply by~ ﬁ (?e)

. ) ’,_
and integrate with respect to r, to obtain




Z ,
2
- Z e -+ - * +
ST S (D W Gxy, ) dr, =0 (D)
j .
Now use equation (5) to obtain b

[v2+x?] 8 (= f GV ET) YEE 6, (6)

3

where

Z 2 ,
V(t,T )~-*“—+Z — )
=t v -l

is the interaction enmergy between the incident electron and an atom com-—

posed of Z electrons and protons, and the wave number Kh is given by
K°= 5 (B ~E)

Now suppose the incident electron has wave vector ﬁi and impinges
on an atom in state with energy E . ' Then the asymptotic behavior of Ef(¥)_

for larger ¥ has the form

iK,.r

L)
R iﬁi:' e £
Ff(r') v e A Gfi + r' ff(6,¢) (10)

?
where ff(6,¢) is the scattering amplitude corresponding to the excitation
of the fth state of the atom and 6,9 are the polar angles of T referred
to the direction of incidence as polar axis,

Consider the equation for the Green's function

-+

[F+xT e GIN= sF -9
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then the solution to equation (8) can be written as
& |
. %
e T 5+ CEIY v Gy v GE) v (r,T) dr dr (1)
£ ﬁ2_ f e e e’, e

should have the correct asymptotic form given by equa-

P () =

In order that Ff

tion (10) we find?
. - >
1Kf|r—r'l

o . B ’ _ .
Gle,r) = = GEFT . o aw

where Ef is a wave vector in the direction of ¥.
Now ) ) _ A _
: .
: _ 2 _ Y
Ir-r'[ = -(r2 + r'2 - 2rr' cos 8)% = r'[(%.) + 1 ~-%¥'Cos Q]
. 1 " -

So for large r' ' - - (13>
and = Kfrf - KT (14)
> > ‘ £ ' 2
Then : . ¢ (r,r') v - ' _ (15)
' ) Loyt _ \ :

Substifute equation (15) into Eguation (11) to obtain

ik, 7 N iRer! ~iK T
Ty L 1 __m e £ * > > T s
Ff(r ) = e Gfi =) = -[]‘e wf (re) v (r,re)W(r,re)dredrl(lﬁ)

i
Comparing equatiomn (16) with equation (10), we see that

£ ( }__m- ‘-iﬁf.;*—»  ++ -+ - > > ' '
£ 8,¢9) = SoR2 e ‘wf(re) v (r,re) ? (r,re) dredr {(17)

i




To obtain the Born scaftering amplitude make fhe‘assumption
that the incident electron interacts only slightly with the target
atom so that its wave function may be closely approximated by the

- ‘

plane wave eiﬁir whigh would be the correct wave function in the
absence of all interaction. This approximation should be valid when
the speed of the electron is great in comparison to that of the elec-
tron in the target atom. This is essentially equivalent to the re-

quirement that Kia>>1 where a is the range of the electron-atom.

interaction. With the above.assumption substitute

. -+
v ‘*,(4 -+ ) = ‘lKir >
L r,r ) = e 1vi(re)

. into equation (179  Then
.

, PRy - Re)ew N
£,(0,4) = - ——=— | e 1T T v (yar (A8
21h .

where

> * 5 _l - -
Vg @ =¥ GV G WGEY &, a9

Now substitute equation (9) and equation (19) into equation (18) and use
Bethe's integral®

> > _
iK*r Lo
T

| o e ? ol m R
- TR
E : A S ‘ :

to obtain




2
) “ 27 * > (-r ) [fl—lz:‘%} d+
ff(8,¢) = ;zgg ?f (re) b, (r, “i,// r,
. y P
* iK*r
-, ] f o, G e doy G dE,
- K j=1 :

L ﬁf and 41X is the momentum change of the incident electromn.’

The first term vanishes due to the orthogonality of the atomic

. Where ﬁ e i

b

- wave function.

So ( in atomic units)

_ >+
. 2 . * > iK'rj -5 -
ff(6,¢) = Ei’f . .jﬁwf (re) e wi(re) dre (20).

e ] I

- Bquation (20) can be simplified by writing wf(¥e) and wi(;e) in terms

of antisymmetrized product wave functions. Thus

G = wf('é.l.f.?z)_ = _(z:)*;E eyg.. .k V() ¥y (?2)_...;4;1(('"%2)
and
b G : ‘p;(;l"';z) = (_Z:}_Lé €pm..on Yo (D) ¥ (Ep)e et ()
“'ﬁhere Eij...K is the permutation symbol
r--;-]. even permutation
Eij...K ={ 0 any two indices the same
-1 odd permﬁtation

A2
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L]

Consider the expression

z kT
iK'r
* - t -> >
) J ve () e v, (7 )dr,
t= A
z iKT,
> - *® > > t -+ +
= Z d{;rl...drz wf (rl...rz} e wi(rl...rz)
t=1 . -
_ 1 > + Kk ¥, 1K Ty > > ‘
"z §=1 €i5...K pm...m fdrl"-'drz Vi (rp)eedplay) e Yy led ey (r) (2D

In order to simplify equation (21) consider the case t = 1.

Then equation (21) becomes
i

e o
iK. v

N : > ko 1 -> '
70 fi3...K Elm...nfirl vy (1) e “jz(rl) S4m** *%kn

where wi(rl) is the final state wave function that does not: appear in the

initial state wave functions.

> >
' ikor |
_‘-]; > ko 1 -+
TZ! f43...K fg3...K fdrl"’i (ry) e ¥y, (ry) _ (22)

Now use the relation € = (P-i)! Gua' where P is the

UBYsaa® ea'By...n

number of subscripts on the ¢ 's,
aBy...m

Then equation (22) becomes

-+ > .
.7
L @ Ry e,
=7 (z 1)'611 J{Idrlwi.,(rl) e | wg(rl)

' . iKer
2> % > 1 -
,/~ dr b, (rl) e wi(?l)

|
Bl
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But this shows that all of the terms in the sum in equation (21) are

equal. And since there are Z terms in the sum equation (21) becomes

o % S K- -
fdr zp;f ¥y e* v, (1)

where ¢f(;) and wi(;) are the final and initial state wave functions of
the excited electron.
Using Slater Wave functions the expression for the Born scat-
tering amplitude becomes
: I &
. i¥.
= - = >
£(6,9) 5 dr r R.n . (r) Rn.z'(r)<2fmfle. lﬁimi_
K £7f 171
where
%3 + %2
iz i¥-r
; <5Lfmf ,e [ﬁimi> =1 dQ Yi o () e 'f . (5
. ff 11
Te do the angular integral choose X to be along the z-axis and

use the expansion

.ﬁ.’* o 1/2‘ ) .
El r = §=0 iv [‘5}1‘:(2\)“"1)] 3\)(Kr)Y\)o(Q)

where jv(Kr)‘is a gpherical Bessel function of the first kind.

For an s + p excitation the angular integral becomes

‘ o
<l mg |elK loos= i3 jl(Kr)

e omnr e



To do the radial integral for SWF I use equation (1) which gives the
Rn's in the terms of the F's.
Finally the scattering amplitude for an s + p excitation

becomes (for SWF I)

2/3 8 N (a,.-2)!
£(x) = ——i-t 3 F ¥ iR
4 Fq 'nf,nf+1*j ni,ni+l—K ax
K3 j=l...ng & p 3
=1...n jK

4 - i - - - 22
h(ajK 1) sin (ajKejK'ﬂlz) + Pik cos [zajK 1) ejK ﬁ/Z:] (22)

where

ajK = ng + 0, + 2 -3 =K, (23)
Z .
nf+1—3 ni+1-K _
ij=[____._ e (24)
. n,+1-K .
n_+1-3 i
f
- K A 2
ejK = tan { ij ) and op g ij + K

For an s -+ p excitation the angular integral remains the same when SWF II

are used. In this case use equation (3 ) for R {(r) and R {(x).
) nfﬁf : nili

So for an s + p excitation with SWF II

15



zfgmnflaniﬂi
£(K) = .~ Z_l L, Tageimgrrmi, Tagen e
i J= e BT g 3
E=1...n_=-2,
i i

(a K—Z)f I- : ‘
—Jmajx LK(ajK-l) sin (ay 8.p=1/2) + oy cos [(agm1)0,,~7/2] (25

p

3K

Total cross sections were also calculated using an effective

b

potential of the form

¢ & |77
e

|
i

vr -1 =

In dimensionless units

, > -+,
e )2(Ka0)2(Ji§J—) a_
o) o

vr =) = - ——
|r - 1']
2 k2 (]
o '
V(F-% )=~ =S .
Iz - ¥
Now choose
c .2 .2
PR
[o]

where Z is the atomic number of the target atom and E_ is numerically

T
equal to the threshold energy in Rydbergs. The effective potential'has

an overall effect of replacing the Born scattering amplitude by

| 2,22
£() = £, (KYQ + 2°EK")
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TOTAL CROSS SECTION

The total cross-section is given by

| [ 2
S Oy = E;‘ [£¢o,4)]" daa .

. - ' .
v - Since our V{r) has azimuthal symmetry

dQ = 2% sin Bda_

the total cross section becomes T
2K,
£ 2 .
Tp = Ki f{f(e)l sin 8d6 .
s}

-3
Now from conservation of momentum (hK is momentum vector) we get

2 2 2

K™ = Ki +Kf - 2Kin cos O
where h_lz is the momentum transfer and 6 is the ang(é{.j between "ﬁi and Fﬁf.
't
Then
| 2KdK = 2K K. sin 6d@
. i~f
or ‘
i
. _ KdK
sin 8dB = XK .
if
Now at 6 =0
2 — > 2 —
Kogn? = &y — K™ or Ky = KK,




and at 8 = 7

max)Z )2 or KT8F o Ki " Kf )

From E = K? and Ef = Ei - ET where Ef is the energy of the scattered elec-—

tron, Ei is the incident electron energy and ET'is the threshold energy

ve get

max _ _ 3 5 - 3 _ Ei_ s
Kom = K % Ko= (B)° % (B)" = (B) L@ E )*]

And so the integral for the total cross section becomes

K _
max
g = 27 ' 9 .
T Kiz ak K|f ()| (26)
g
min

Slaters' rules are used to determine the effective atomic num-
bers Zn's. These values are used to calculate the orthonormality constants
A 's and.N 's for the SWF I and the A__ 's and N__ 's for SWF II. The

oy n ‘nin nk
an's and Fnij's are in turn calculated from these orthonormality constants.
These results are then substituted into equation {22) for SWF I and into
equation (25) for SWF II. The scattering amplitude thus obtained must
be squared and integrated over the momentum transfer according to equation

(26).

The following cross sections were calculated using both SWF 1

-

and SWF II: Li(2s - Zp), 1i(2s + 3p), Na(3s = 4p), Mg(3p ~ 4s), Cal4s -+ 4p)

.and K{4s -+ 4p). Two computer programs which were written to do the cal-

culations are given in the Appendix. The first program calculates the

18
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total eross section using SWF I as follows: First the a,,'s given by

ik
qu?tion {23) are calculated. The the ij's equation (24) are calcu-
lated. HRext, the an‘s equation (2') and the Ann's eduation (2') are
initialized to 1 and 0 respectively. The Nj's and Anj‘s are calcula-
ted next. These must be calculated together since they depend upon
each other.: Then using the calculated Nj's and Anj's the Fnj's
equation (2) are calculated. Finally the last part of the program cal-
culates the scattering amplitude f(K) equation (22) squares it and in—
tegrates If(K)]2 over the momentum transfer using Simpson's rule as an
approximation to the integral. ‘

The second program calculates the total cross section using
SWF II. This program calculates the radial integral in addition to
the iﬁtegral oyer the momentum transfer. Thug, the Nnj's and ﬁhe Anjﬁls
are calculated first.. Then the radial integration is done and finally’
integral over the momentum transfer is done. Simpson's rule is again
used for both of these integrations.

The results of thé calculations are given in graphic form on
the following pages. These ;esults ére compared with the caleculations
of Vainshtein, Opykhtin, and Presnyakov (QOP) and Qith experimental data
where available.‘ It was found that the difference in using SWF I and
SWF IT for all of the calculated excitations was less than about 5%.
The data are therefore only plotted for oneAset of wave functions.

Agreement with VOP is very good for the Li(ZS + 2p) transition.

Both calculations are high with respect to the experimental data given

in reference ( 9). Agreement with VOP for the Li(2s —» 3p) transition



*

is not as géod with VOP obtaining a peak cross section which is more than
3/2 times and at a lower enefgy than the SWF result. No experimental
data could be found for this transition. The SWF result for the
Na(3s + 4p) is about an order of magnitude smaller than.the VOP calcula-
tion up to 5 threshold units and a factor of 3-8 smaller for the higher
energies. However, the SWF cross section for this transition has an
oscillation in it.' More will be said aboutr this oscillation and attempts
‘to understand it (Z4 = 1.35 curve) in the conclusions. As can be seen
from thne graph the SWF crosg.séctionyis closer to the experimental values
given in reference (9 ). . No other caleculations or experimental data could
be found for the Mg(3p + 4s) and Ca(4s - 4p) transitions. Good agreement
with VOP is obtained for the K(4s = 4p) transition. The cross section
'peaks‘at roughly the game energy bu;_the VOP peak is about 50% larger
and does not tail off as fast.

All of the Modified Born results show the expgcted behavior
of a lower cross—-section at the lower energies with the approach to the
same value as the Born Approximaticen at the high energies.

These data are presented in tabular form in Tables I and II on

pages 27, 28 and 29.
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TABLE I .
ELECTRON EXCITATION CROSS SECTIONS

( Units of wai )

Li (2s > 2p) Li (2s - 3p)
(thresho?d—unitsj ?gég) ggi; vor {7 cc(® EXP.cé) ?EE?) ggié vor¢?
1.16 L101(3)  .961(2) .998(2). . 284(2) — J551¢0)  .399(0)  .201(1)
1.64 J30(3)  .125(3)  .131(3) .564(2) - .788(0)  .518(0)  .187(1)
2,00 J127(3)  L122(3)  L129()° -— .159(2) .917(0)  .667(0).  .151(L)F
2.44 A119¢3)  L115(3)  .122(3)° ~- .230(2) ,102(1)  .813(0)  .127(L)°
3.56 .995(2)  .966(2)  .103(3) - 239(2) J118(1)  .101(1)  .B9L(O)
5.00 .818(2)  .797(2)  .850(2)% -~ .213(2) .120(1) .107&15 .631(0)*
6.76 | 674(2)  .659(2)  .692(2)% - L 186 (2) J115¢1)  .105(1)  .477(0)%
11.24 J475(2)  .465(2)  .501(2) - .161(2) L976(0)  .911(0)  .286(0)
17.00 .351(2)  .345(2) .375(2)a — .156(2) .809(0)  .765¢0)  .190(0)°
524.04 L271€2)  .266(2)  .298(2)? -— u L144(2) .675(0) 643(0) 1330

a ~ Graphically interpolated,

LT



TAELE I

{cont.)

Na (3s + 4p) Mg {(3s = 4p) K (45 -+ 4p) ba (4s ~+ 4p)
o™ el @ L@ | K M e el Gy | B el
266 (0) q.211(—1) L3200 — | .753(-1) .195(~1)] .103(3) .417(2) .135(3) LA11(2) 294010
L2110 L187(-1) .360(1) .232(0) L214(0) .842(~1) L130(3)  .5%7(2) .187(3) .774(2)' L112(2)
L194(0) .245(—1)'.347(1) L234(0) .253(0) 119(0) L125(3)  L,611(2) .186(3)a LB866(2)  L161(2)
.194(0) .381(-1) .311(1)  .230(0) .273(0)  .148¢0) | .115(3) .596(2) .182(3)% | .902(2) .205(2)
. 209(0) .240(—1) .222(1) .'223(0) .279(6) L178(0) L931(2) TSZQ(Z) L159(3) .873(2) L2646(2)
.219¢0) .103¢0)  .170(1) L214(0) L261(0)  .183(0) | .746(2) .452(2) .135(3)% | .786(2) .288(2)
L219(0) L120(0)  .132(1) L193(0) .236(0)  .175(0) HB04(2) .583(2) .114(3)a L690(2)  .289(2)
.196(0) .124(0)  .839(0) -— L187(0)  .148(0) .414(2) .280(2)  .821(2) J526(2)  .261.(2)
L16940) L120(0)  .585(0) —— L149(0) .122(0) '.301(2) L212(2) '.595(¢2)a LA09(2Y  L225(2)
144 (0) .109(05 f426(0) —— L121(0)  .102{0) L230(2) .457(2)a .326(2)  .193(2)

.166(2)

a ~ Graphically iﬁterpolated

b ~ Additional points calculated, n = 1.02, o = 0,148;

n=1.04, ¢ = 0.195; n = 1.08, o = 0.241,

ge



ELECTRON EXCITATION CROSS SECTIONS FOR Na (3s -+ 4p) USING 2

TABLE II

- 4y = 1.35.
. 2
(Units of 'rrao)w
E (Threshold units)| 1.16 1.64 2.00 2.44 3.56 5.00 6.76 11,24 17.00 24,04
Born (SWF) J469¢0)  |.477(0)  1.555(0) | .657(0) | .818(0) { .883(0)| .878(0) | .781(0)| .664(Q) | .563(0)
Mod. Born .313(-1) |.581¢-1) |[.119(¢0) | .202(0) | .367(0) | -.478¢0) [ .532¢0) | .537(0)} .489(0) | .433(0)

6C
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LINE STRENGTH OF Na(3s - 3p) LINE

The line strength for spontaneous emission in the dipole

approximation is given by

n,mK 2
N | ap
i,K | |

where i and X number the degenerate sublevels of the upper state n-
and; lower state m; and where the summation is over all possible
.

combinations of the sublevels of the upper state witﬁ those of the

lower state; and where

B = <nft|m> (28)

It will now be shown how S is related to the Einstein coeffi-
- cient for spontaneous emissicn. This will be done semiclassieally in
the sense that the E and M field is treated classically while the par-
ticles are treated quantum mechanically. - A correct quantum electrodyna-
. : 11
mic treatment leads to the same results™ ™,
"Maxwell's equations of motion for the electromagnetic field

are in gaussian units

i
!

Vo T = 4 (29  Vx 23 (30)

TxE+=2_9 (31) v =0 . (32)

30



From equation {(32) we sece ﬁ =
into equation (31) and the order of the
is interchanged we obtain

o L “K
= o 0.
Vv (E+ - at)
> 1 24 =
Thus E+= ——=-~¥
¢ dt
o 1 BK =
or E=- - ac v

&

Substitution of the equations for E and

-+ -
¥ x A. If this is substituted

spatial and time derivatives

i into equations (29) and (30)

L 2
@ .xelay 2zl L4y (33)
c @t 2 2 c
c ot
I 3. - > 2
s V* A+ V=~ bup (34)
where V x(% x4 =V {5 - VZK has been used. Now choose the Lorentz

o

gauge so that

-5

-5
V -

L=

1 34
+—__....
c ot

Then equations (33) and (34) become

2+ 1 9%k
VA - 22
7 2
c ot
2
Z 1l 394
Ve -3 T
c ot

0

(35)

(36)



Now, taking the curl of equation (35) we obtain

2
2x 1 sTH bt
voH -2 2 e

< T (37

. " ) -::' ) I
Assume that the three cartesian components of J vary harmonically in

time with the same angular frequency w but not necessarily with the

same

where

phase:

X

3G B =2 [0 @ s e 8) =3 & Ty @

<

3,6 =13 ©]

£ 8)

16

1
X
e

with similar equations for the y and # components. We are interested

—)— e
only in the solutions for E and i that have the same frequency w. Thus

the x—-components are given by

where

-
Ex(r,t)

-
Hx(r,t)

E () -
x

Using

= 2[E, ()] cos (ut - ¢)

= ZIHQ(?){ cos (wt - ax)

iEX(¥)| RS and
.

equation (30) E is given

EGE) =

{ F -q .
=E (&) P 4+ B () & (39)
x X
- %
= HE @ e p o @e™ (s0)
% x
- - ion
- '
H (1) le(1 e
in terms of H in a2 vacuum by
£ % 28 &. (41)

G
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[

N . L, . =
Substituting the expressions for J, i and & 1nto the wave equation for H,-

équation (37), weiobtain,
(V2 <+ KZ) ﬁ(?) = - é%- VxJ (?) ¥ = w/c (42)

The retarded solution of the above equation is given by

3 | 119 "3"(_)') 'K+ —-;'i 3
B =2 s o0 T (43)
r -r'
Now -
. > . = v N '_ 1 ‘
elKlr T ] | -]; ' elK(r T . COS e) (44)
{.—;— “ry oo r
T~
- -

where 8 is the angle between r and r'.

The Poynting vector is

BEe) = = [EG) x HE,0)]

Using equations (39) and (40) for E and ﬁ, we see that the average over

a period of oscillation has a z component

-+ __(_‘__ o -> _ -
Pz(r) = {;\Ex(r)l |Hy(r)\ [%os(mt ¢X) cos {wt ay)}time
ave

- [Ey(;)l [Hx(¥)\ lcos {wt - ¢Y) cos (wt - uxi] rime

ave

'Pz(}*) =_i2:-ﬁ— SIEX(?E)[ {Hyc?) | cos (o = o) - Ey(’%} E (7)Y cos (& = ¢

~t

o



Then

BE) =25 re [FD x# (D) (45)

Now wé are only interested in those terms in the energy flux
that fall off as l/r2 since only these correspond to radiated energy.
Choose the'z;axis along the wvector ¥ which goes from the center of the
charge-current distribution to the point at which the field is measured.

Using equations (41), (43),.and {(44) we obtain

' . 3
. R - { 1 T
H 5. - iK e1Lr v{‘Jy(;.) o i¥z d’r

X re.
| iK  iKr > ~iKz' 63r'
1 H - ~— e J (r') e :
v Ic X
Hz -+ 0 ‘ - (46)

. 3

. . N | T

£ - iK elKr J’J ("I’:') e iKz d r
P re ¥ :

o~

. c . = 1
g+ X elK‘-’J 1@y T g3
Y re . v

" E + 0

Partial integration has been used to get rid of the derivatives
of : . B ;:;egraﬁd of H.. The above equations show that the asymptétic-
fields are transverse to the direction of propagation. Theﬁ also show
that only the component of the current perpendicular to the &irection of

propagation contributes to the radiated energy.

34



Substituting these fields into equation (45) we obtain

2 et ik 2
T S {[ﬁJ K2 43 |2 + [J[; e IRz 3 ]
z 2, X Yy
2nr ¢ -

Generalizing the above equation to give the average energy flux im the
s = .
direction of K we obtain
2 i-;’-h‘,l 2
P = K | 5oy &N a3 [
z 1K _
2
2ar7c
- . -}. . » .+
wvhere J ., is the component of J perpendicular to K.
In most cases of practical.interest the wavelength of the
radiation is many times greater than the linear dimensions of the cur-

T

5
Krr
can be

rent-charge distribution. This means that R-r' <<l and e

replaced b§ 1l in the integrand of the equation for PZ. Then

. 2 ‘
P = Kz' [IJLK-("E') ade |.2 (47)

21T ¢

From equation (46) with the same approximation it is apparent that the

polarization of the radiation is determined by the total current vector

3 - f:f(;q e

-
With Jo linearly polarized the integral in equation (47) can be replaced

by I?O|2 sin26 where 8 is the angle between K and jo' Then the total

2 27 T
p = —& 5 13 [2 b{ntv{m r? sin’e deds
_ 2 o
2rrc e
. ! ;)

= 5o 13l (48)

power radiated is

35



Equation (48) is also valid for non-linear polarizations.
To coavert to quantum theory the classical expression for J
. -
must be replaced by its quantum analog. We want to replace J by a
current density that is associated with an initial upper state Uy and
a final lower state u s since energy is radiated during the transition
from K to n. It is natural to represent the current density as a pro—'
duct of a charge density and a velocity and to take for the velocity
’ -
the momentum operator divided by the mass: ~-(if/m)V. The charge den-
sity for a stationary state is expected to be the charge of the particle
. . . s . .o 2
times its position probability density i.e., elwl . However, we are
concerned here with a transition between states and so replace this by
¥ &+ >
eu u.. Thus we can replace J{(r) by

F@y » - z.gﬁ. u:(?)ir*uK(?)

' - ! -+ -
To get 36 we must integrate the above expression for J(r) over the coor-

dinates.
Thus
. %
I =-2|u v u d3r
0 m n K
or
%
3 = = u ? u d3r
e} m n K
or
= e -
Jo= = <o .|.P| K> . (49)



The matrix element of D is D = m%% .
1 ” d
-
_ - —— T . 0
So = <alP[R> = = « 'Y K> (50)

If an energy representation in the Schrodinger picture is used we have

N N iwnKt
<a(t) |r| RK(t)> = <n(o) |¥]| K(o)> e
En B EK
where © X = .
o A
So -

d - > ) d .y imnKt

e @ 7l ko) > = F ) [T Ke)> e
iw t
. - nk

= 1mnK<n(o) |r| K(o)> e

= dw_e<n(t) IT] ®(t)>  (51)

Substituting equation (51) into equation. {50) we obtain

%‘<n|?|K> = 1o o <n|T|K> . . (52)

Substituting equation (52) into egquation (49) we obtain

30 = lew_p <n\¥\K>. (53)

Substitution of equation (53) into equation (48) gives the radiated power.
We can interpret this power as the product of the spontaneous rate of
transition from n to K and the quantum energy*ﬁwnK'= EK - En given off

2

in each transition.



Thus

L alfe)?

and the transition probability per unit time for spontaneous emigsicon

(Einstein probability coefficient) becomes

74K262unK
AL =T |<n|Z]x> |
nk )
3hie
<
Using @y = Ke we obtain D
23
fe"wT
Apg = 3nh |<RI%IK>|2
3tic

The line strength is the sum over all possible combinations of the

(possibly) degenerate sublevels with those of the lower state of the

matrix element in the expression for AnK

To calculate the line strength of the Na(3p + 3s) line we
need the effective atomic numbers Zn'for sodium. Using Slater's rules
we find: Z = 10.7, 22 = 6,85 and 23 = 2,20. From these values the A's

and N's can be found and substituted in Slater's radial wave functions.

/

The same result is obtained for the line stréngth of the Na(3p = 3s) if
either SWF I or SWF II are used.

Thus we obtain (in atomic units)
B 3 A
n'- ‘K * Z

799 V& |-e_ + ie
. x ¥

l
o

fl

for m

for m

il
]
=
jo
Hy
=
™
ru
2
a1
fl

:
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R ' s . .
' _ LE ! 3 _ 44
for m = 1 ¢n Ty, d’r .799/€b[gx , 1e§] .

w

When these results are substituted into the expression for S the answer

is (in atomic units)

s = 22.9.

This compares reasonably well Witﬁ an experimeﬁtal value of 19 atomic
units given in reference 2.

The value obtained for the Einstein probability coefficient
is

AnK = 2.2567x 106 Sec-l.
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CONCLUSIONS

With thé exception of Na(3s -~ 4p) cross section the SWF cross
sections are roughly with a factor of 3-4 of VOP's results. In parti-
cular, there is very good agreement with VOP for the Li(2s + 3p) cross
section. One should realize that compariﬁg one theoretical calculation
with another does not estabklish the va;idity of either.

The oscillation in the Na{3s + 4p) cross section is discon-—
certing. Normally such oscillations come from the interference of coupled
states, but couplings have not been included in the SWF calculation and
so it was first thought to be a programminé error. A second program was
written to serve as an independent check on the results of the first pro-
gram. In this program the radial inﬁegration was also done on the com-
puter: Numerous excitation levels of hydrogen using hydrogen wave func-
tions were calculated with both programs. Eoth gave the same ;esults
and agreed with the résults given in VOP., When SWF'srweré used the pro-
gramg also calculated the A and N parameters. Both programs used the
same Yroutine for calculating these parameters. Sc it was concluded that
the o;cillatibn in the Na(3s + 4p) cross section was real.

By setting all of the A's individually equal to zero it was

found that only A significantly affects the cross-section. In.par-

413
ticular by setting A413 equal to 90% of its calculated value the oscilla-
tion is removed. However, the cross-sections increase by about &0%.
Using the orthonormality conditioms <R__,R_, > = §_ , it can
ni’ o' L nn

be shown that



A = - drr2R3l(r) [r3-exp(—24r/4)]

Thus, the absolute value of A can be reduced by using a different

413
value for Z4 than that given by Slater's rules. The value obtained
for 24 by using Slater's rules is i4 = 1.00. By setting Z4 = 1.35 the
oscillation is removed. Howevef, this increases the cross section to
3-4 times the original calculated value and the peak shifts toward
higher energy. This rather large|<ch?nge in the cross section should
be expected since the A's, N's and F's alltdepend on 24 and these -
appear in the expression for thé scattering amplitude £(K).

Thus it appears that the absolute value of A413 is too large.
H?h;g éouldrbc due to too lérge_an overlap betgeen R31 and the characteris-

tiec part of R41 which is the factor in brackets in the above expression

for A413.
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APPENDIX A

The following programs were used to do most of the calcula-

tions related to this work. The first program does both the radial .

-

integral and the integral over the momentum transfer using Simpson's
rule as an approximation to the integrals. The first part of the
pro%ram down to and including statement 10 caleulates the Nng's and
Ankjls' Then the radial integration is done and finally the integral -
over the momenfum transfer is done.

- The second program as given uses the SWF I. Only minor
modifications are required to use SWF II. In this program only the
integral over the momentum transfer is done as equation (1) is used
for £(K)., This program will work for any s + p transition for which
ne ; ;i' If nf=% o, enough Nj's, Anj's and Fnj's may not be calculated.

Only the statements marked * need be changed to calculate the total

cross—-gection for other than s + p transitions for which ne > n, -
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Read A parameters

Incident Energies
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AAA = 1.732

s
£

XN = No. of pts for K
" integration
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integration
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Initialize all radial wave
functions to zero at all
points of integratiomn
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END
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&
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